				HL I	BONDING	TEST			
ı			` '	•		~ ~	_	c chemistry. The formun the dichromate(VI) ion	
	A	106	В	104	С	102	D	56	
2	The fo	ormula of sil	ver nitra	te is					
	Α	Ag(NO ₃) ₂	В	Ag₃N	C	AgNO ₃	D	Ag_3N_2	

	of the dichiomate(vi) longs of 20/ The t				ne totai	total number of electron in the dicfromate(vi)				
	A	106	В	104	С	102	D	56		
2	The	formula of s	silver nitrat	e is						
	Α	Ag(NO ₃)) ₂ B	Ag_3N	С	AgNO₃	D	Ag_3N_2		
3	Wh	at is the elec	tron doma	in geometr	y and the	F-Xe-F bon	d angle	in XeF ₂ ?		
	Α	Tetrahe	dral 104°		В	Linear 180	O _o			
	С	Octahed	dral 90°		D	Trigonal b	<mark>ipyramic</mark>	<mark>dal 180º</mark>		
4	The	e formal char	ae (FC) or	the carbo	n atom in	carbon mon	oxide is			
	Α	0 B		C 1-		2-				
_										
5		which of the fo								
	Α	CH ₃ CHCH ₂	2 <mark>B</mark>	H ₂ CCH ₂	С	H ₃ CCH ₃	D	HCCCH ₃		
6	Wh	ich of the foll	owing is a	catalyst fo	r the dest	ruction of oz	one in tl	ne upper atmo	sphere?	
	Α	Cl ₂	В	CI	С	0	D	CF ₂ Cl ₂		
7		e molar mass		CH₃OH and	I CH₃F of a	are very sim	ilar. Hov	v do their boili	ng	
	A	CH₃F < C₂l	H ₆ < CH₃C	Н	В	CH₃F < C	H₃OH <	C ₂ H ₆		
	С	CH₃OH < 0	$CH_3F < C_2$	H ₆	D	$C_2H_6 < CH$	H₃F < C⊦	<mark>∃₃OH</mark>		
8	Wh	ich of the foll	owing nitro	ogen comp	ounds cor	ntains the fe	west π b	onds?		
	Α	N_2	В	N ₂ F ₂	C	N_2H_4	D	N_2H_2		
9	Wh	ich of the foll	owing is c	orrect?						
	Α	_		elting point	than XeF	2 because id	onic bon	ds are stronge	r than	
	В	covalent bo		eltina noint	than MaF	o hecause it	hae etro	onger London	forces	
	ט	between m	9	citing point	andir ivigi	z booduse ii	. กนอ อเก	Jingor Loridon	101063	
	C			<u> </u>				nore polar thai		
	D			elting point en molecu		2 because id	onic bon	ding is stronge	er than	
		LUI IUUI	COO DOLLARO		.00.					

10	in wi	nich of the foll	owing a	re the P-O be	ona ieną	gtns all equal	?	
	Α	H ₃ PO ₄	В	H ₂ PO ₄ -	С	HPO ₄ ² -	D	PO ₄ 3.

HL BONDING TEST

- 11 This question is about the hydrides of Group 16 elements with the general formula H₂X.
 - (a) Draw a Lewis is structure for H₂Se and predict the H-Se-H bond angle.

[2]

[1]

Lewis structure completely correct for [1] Do not award mark if H₂O or H₂S drawn

Bond angle 90-108°

[1]

(b) Explain which of the compounds H₂O, H₂S or H₂Se contains the most polar H-X bond.

H₂O and biggest difference in electronegativity between H and X

Explanation must be about difference in electronegativity between O and H/between the atoms in the molecule – just saying that O is more electronegative than S/Se does not explain it and should not be awarded a mark.

(c) The boiling points of some of the Group 16 hydrides are shown in the table

	boiling point / °C
H ₂ O	100
H ₂ S	-60
H ₂ Se	-41

Explain why H₂O has a greater boiling point than H₂S

[2]

 H_2O has hydrogen bonding <u>between molecules</u> but H_2S does not; Must be some sort of comparison/implication that H_2S does not have hydrogen bonding

Hydrogen bonding between water molecule stronger than dipole-dipole/van der Waals' forces/London forces between molecules in H₂S;

Must have the idea that intermolecular forces are being considered

HL BONDING TEST

- 12 Cyanogen is a colourless, poisonous gas with the formula (CN)₂.
 - (a) Cyanogen can be prepared by the reaction between copper(II) sulfate and potassium cyanide.

 $2CuSO_4 + 4KCN \rightarrow(CN)_2 + 2CuCN + 2K_2SO_4$

(i) Balance the equation for the reaction.

[1]

(ii) Compare the charge on the copper ion in CuSO₄ with that in CuCN.

[1]

Cu²⁺ in CuSO₄ but Cu⁺ in CuCN

(b) (i) Draw the Lewis structure of cyanogen

[1]

|N≡C-C≡N|

Do not accept alternative structures such as $|N\equiv C-N\equiv C|$ or $|C\equiv N-N\equiv C|$ These have higher FC. Still linear though so next question fine

(ii) Deduce the shape of cyanogen

[2]

Linear;

Two electron domains about each C;

(c) In alkaline solution the following reaction occurs:

$$(CN)_2 + 2OH^- \rightarrow CN^- + OCN^- + H_2O$$

(i) Deduce two possible Lewis structures for OCN⁻.

[2]

$$\begin{bmatrix} \overline{Q} = C = \overline{N} \end{bmatrix}^{-} \begin{bmatrix} \overline{Q} - C = \overline{N} \end{bmatrix}^{-}$$

$$\begin{bmatrix} \overline{Q} = C - \overline{N} \end{bmatrix}^{-}$$

Allow the third structure but it is highly unlikely

(iii) Explain whether the C-N bond length is longer in CN⁻ or OCN⁻

[3]

C-N bond is longer in OCN

Triple bond in CN⁻

But resonance structures/delocalization in OCN⁻ (where only one of the resonance structures has a triple bond between C and N)

If only first and third Lewis structures drawn allow explanation based on the fact that only C-N and C=N present.

HL BONDING TEST

Some physical properties of some Group 13 halides are shown in the table

	melting point / °C	Conducts electricity in solid state?	Conducts electricity in liquid state?
AIF ₃	1290	no	yes
AlBr ₃	98	no	no
All ₃	189	no	no

Explain the data in the table in terms of structure and bonding.

[5]

AIF₃ ionic bonding and giant structure but AIBr₃ and AII₃ covalent molecular;

AIF₃

High melting point because strong electrostatic forces of attraction between oppositelycharged ions require a lot of energy to break (OWTTE)

AlBr₃/All₃

Low melting point because not much energy required to break dipole-dipole/van der Waals' forces/London forces between molecules;

All₃ has higher melting point than AlBr₃ due to higher molecular mass/more electrons therefore stronger London forces between molecules;

AIF₃ conducts electricity because mobile ions present ion liquid state but AIBr₃/AII₃ do not because no ions/only neutral molecules present;