Equilibrium Test Mark Scheme

1 Consider the equilibrium: $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$

What is the effect of decreasing the pressure on the position of equilibrium and the value of the equilibrium constant, K_c ?

- A The position of equilibrium shifts to the right and K_c increases
- B The position of equilibrium shifts to the left and K_c decreases
- C The position of equilibrium is unchanged and K_c does not change

D The position of equilibrium shifts to the left and K_c stays the same

2 Consider the equilibrium

 $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g) \Delta H=-92 \text{ kJ mol}^{-1}$

What is the effect of increasing the temperature on the position of equilibrium and the value of the equilibrium constant, K_c ?

A The position of equilibrium shifts to the right and K_c increases

B The position of equilibrium shifts to the left and K_c decreases

- C The position of equilibrium is unchanged and K_c does not change
- D The position of equilibrium shifts to the left and K_c stays the same
- 3 Explain what is meant by the term *dynamic equilibrium*.

Macroscopic properties remain constant;

Rate of forward reaction = rate of reverse reaction;

4 $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g) \Delta H=-92 \text{ kJ mol}^{-1}$

State and explain the effect of introducing an iron catalyst on the position of equilibrium and the value of the equilibrium constant, K_c ? [3]

[2]

No effect of on position of equilibrium;

or value of K_c;

Speeds up forward and reverse reactions equally;

5

Consider the reversible reaction $A(g) + 2B(g) \rightleftharpoons 2C(g) + D(g)$

2.0 mol A and 2.0 mol of B are put in a reaction vessel of volume 5 dm³ and allowed to come to equilibrium. At equilibrium there were 1.6 mol of A present. Calculate the value of the equilibrium constant. [3]

	A(g) +	- 2B(g) =	⇒ 2C(g)	+ D(g)	
Equlibrium number of moles	1.6	1.2	0.8	0.4	;
Equlibrium concs	0.32	0.24	0.16	0.08	,
$K_{c} = \frac{0.16^{2} \times 0.08}{0.32 \times 0.24^{2}} = 0.11 ; \qquad corr$	ect final a	nswer sc	ores [3]		

Equilibrium Test Mark Scheme

6 Consider the following reversible reaction at 300K

$$2A(g) + B(g) \rightleftharpoons X(g) + Z(g)$$
 K_c=25

A and B are introduced into a reaction vessel of volume 10 dm³. At a certain point in time the number of moles of each species present is given in the table.

Species	Number of moles
A	0.10
В	0.30
Х	0.20
Z	0.20

State and explain whether the system is at equilibrium or not.

 $Q = \frac{0.020 \times 0.020}{0.010^2 \times 0.030} = 133 ;$

 $Q \neq K_c$ therefore the system is not at equilibrium ;

- 7 Consider the reversible reaction: $A(g) + B(g) \rightleftharpoons C(g) + D(g)$ $K_c=1.20$ at 300 K
 - (a) 1.00 mol A, 1.00 mol of B, 2.00 mol C and 2.00 mol D were introduced into a reaction vessel of volume 1.00 dm³ and allowed to come to equilibrium. Calculate the number of moles of A present at equilibrium.

	A(g) +	- B(g) -	⇒ C(g) ·	+ D(g)	
Initial / mol	1.00	1.00	2.00	2.00	
Equilibrium/mol	1+x	1+x	2-x	2-x	

(Q>Kc therefore reaction will proceed to left towards equilibrium – although this does not affect the calculation)

 $1.20 = \frac{(2-x)(2-x)}{(1+x)(1+x)}$

x= 0.43 number of moles of A at equilibrium = 1.43 mol;

(b) Calculate the value of ΔG for this reaction at 300 K.

[2]

[2]

 $\Delta G = -RTInK$

 $\Delta G = -455 \text{ J mol}^{-1}$;

© SMO	SMOsNotes.com
-------	---------------