## You will need a Periodic Table.

- Paper 1 40 questions 1 hour All questions can be done without a calculator.
- 1. What of the following is a homogeneous mixture?
  - A. a mixture of sand and sodium chloride
  - B. a sodium chloride solution
  - C. a mixture of hexane and water
  - D. a mixture of sulfur and iron
- 2. A substance, X, which is a solid at room temperature, is heated and the temperature monitored. The graph of the temperature against time is shown. At which point are a solid and a liquid present?

A. B. C. D.

- A 2.0 dm<sup>3</sup> sample of water was found to contain 30 μg of arsenic. The concentration in ppm is
  - A.
     15 ppm
     B.
     0.015 ppm

     C.
     6.7 ppm
     D.
     15000 ppm
- 4. The condensed electron configuration for 24Cr is

| Α. | 1s <sup>2</sup> 2s <sup>2</sup> 2p <sup>6</sup> 3s <sup>2</sup> 3p <sup>6</sup> 4s <sup>2</sup> 3d <sup>4</sup> | В. | 1s <sup>2</sup> 2s <sup>2</sup> 2p <sup>6</sup> 3s <sup>2</sup> 3p <sup>6</sup> 4s <sup>1</sup> 3d <sup>5</sup> |
|----|-----------------------------------------------------------------------------------------------------------------|----|-----------------------------------------------------------------------------------------------------------------|
| С. | [Ar] 4s <sup>2</sup> 3d <sup>4</sup>                                                                            | D. | [Ar] 4s <sup>1</sup> 3d <sup>5</sup>                                                                            |

- 5. In the emission spectrum of deuterium the frequency of the convergence limit in the series where the electron falls down to n=1 is 3.29x10<sup>15</sup> Hz. The value of Planck's constant is 6.63x10<sup>-34</sup> Js. The ionization energy of deuterium in kJ mol<sup>-1</sup> is given by.
  - A.  $\frac{3.29 \times 10^{15} \times 6.63 \times 10^{-34}}{6.02 \times 10^{23} \times 1000}$
  - B.  $\begin{array}{r} 3.29 \times 10^{15} \times 6.63 \times 10^{-34} \times 6.02 \times 10^{23} \\ 1000 \\ \text{C.} \qquad 6.63 \times 10^{-34} \end{array}$ 
    - $\frac{0.03 \times 10^{31}}{3.29 \times 10^{15} \times 6.02 \times 10^{23} \times 1000}$
  - D.  $\frac{3.29 \times 10^{15} \times 6.63 \times 10^{-34} \times 1000}{6.02 \times 10^{23}}$
- 6. Which of the following is an f-block element and a lanthanoid?
  - A. Uranium B. Europium
  - C. Hafnium D. Rutherfordium
- 7. Which of the following statements is **not** correct?
  - A. metals are found on the left hand side of the periodic table
  - B. metallic character decreases down a group
  - C. metallic character decreases across a period
  - D. metals generally have lower first ionization energies than non-metals



| 8.  | Which of the following has the most exothermic electron affinity?                                                                                                                                                                             |                                                      |                             |                                    |                                                  |                                                                       |                                        |                                                       |                                                                                      |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------|------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------|
|     | A.                                                                                                                                                                                                                                            | Р                                                    | В.                          | S                                  | C.                                               | CI                                                                    | D.                                     | Br                                                    |                                                                                      |
| 9.  | Which of the following compounds will be diamagnetic??                                                                                                                                                                                        |                                                      |                             |                                    |                                                  |                                                                       |                                        |                                                       |                                                                                      |
|     | A.                                                                                                                                                                                                                                            | NiCl <sub>2</sub>                                    | В.                          | CuCl <sub>2</sub>                  | C.                                               | FeCl <sub>2</sub>                                                     | D.                                     | ZnCl <sub>2</sub>                                     |                                                                                      |
| 10. | Whic                                                                                                                                                                                                                                          | h of the follow                                      | ing doe                     | es not conta                       | ain a coo                                        | rdinate cova                                                          | alent bond                             | d?                                                    |                                                                                      |
|     | Α.                                                                                                                                                                                                                                            | O <sub>3</sub>                                       | В.                          | СО                                 | C.                                               | CIO <sup>-</sup>                                                      | D.                                     | NO <sub>3</sub> -                                     |                                                                                      |
| 11. | In the                                                                                                                                                                                                                                        | e Lewis structu                                      | ure of N                    | IO2 <sup>-</sup> the form          | mal char                                         | ge on the N                                                           | atom is?                               |                                                       |                                                                                      |
|     | A.                                                                                                                                                                                                                                            | 0                                                    | В.                          | 1-                                 | C.                                               | 1+                                                                    | D.                                     | 2+                                                    |                                                                                      |
| 12. | What                                                                                                                                                                                                                                          | is the shape                                         | and ele                     | ectron doma                        | ain geom                                         | etry of I₃ <sup>-</sup> ?                                             |                                        |                                                       |                                                                                      |
|     | A.<br>B.<br>C.<br>D.                                                                                                                                                                                                                          | shape<br>trigonal bipy<br>bent<br>linear<br>T-shaped | e<br>ramida                 | I                                  | electron<br>trigoi<br>trigoi<br>trigoi<br>trigoi | domain geo<br>nal bipyram<br>nal planar<br>nal bipyram<br>nal bipyram | ometry<br>idal<br>idal<br>idal         |                                                       |                                                                                      |
| 13. | Some<br>in the<br>soluti                                                                                                                                                                                                                      | e enthalpy cha<br>table. The en<br>on of magnes      | anges a<br>thalpy<br>ium ch | re given<br>change of<br>loride is | Enthalp<br>Enthalp<br>Lattice                    | by change c<br>by change c<br>enthalpy of                             | of hydratio<br>of hydratio<br>MgCl2(s) | n of Mg <sup>2+</sup> (g)<br>n of Cl <sup>-</sup> (g) | -1920 kJ mol <sup>-1</sup><br>-364 kJ mol <sup>-1</sup><br>2493 kJ mol <sup>-1</sup> |
|     | А.<br>С.                                                                                                                                                                                                                                      | 209 kJ mol <sup>-1</sup><br>-5141 kJ mo              | ol <sup>-1</sup>            | B.<br>D.                           | -155<br>155                                      | kJ mol⁻¹<br>⟨J mol⁻¹                                                  |                                        |                                                       |                                                                                      |
| 14. | The Arrhenius equation is k=Ae <sup>-(Ea</sup> /RT). The units of A for a reaction that is second order overall could be                                                                                                                      |                                                      |                             |                                    |                                                  | d order overall                                                       |                                        |                                                       |                                                                                      |
|     | A.<br>C.                                                                                                                                                                                                                                      | no units<br>mol dm <sup>-3</sup> s <sup>-1</sup>     |                             | B.<br>D.                           | s <sup>-1</sup><br>mol <sup>-1</sup>             | dm <sup>3</sup> s <sup>-1</sup>                                       |                                        |                                                       |                                                                                      |
| 15. | The Arrhenius equation can be written in the form $lnk = -\frac{E_a}{2} + lnA$                                                                                                                                                                |                                                      |                             |                                    |                                                  |                                                                       |                                        |                                                       |                                                                                      |
|     | The gradient of a graph of lnk (y-axis) against 1/T (x-axis) is -2000 K and the value of R is 8.31 J K <sup>-1</sup> mol <sup>-1</sup> . From this it can be deduced that the activation of this reaction in kJ mol <sup>-1</sup> is given by |                                                      |                             |                                    |                                                  |                                                                       |                                        |                                                       |                                                                                      |
|     | Α.                                                                                                                                                                                                                                            | <u>2000 x 8.31</u><br>1000                           |                             |                                    |                                                  |                                                                       |                                        |                                                       |                                                                                      |
|     | В.                                                                                                                                                                                                                                            | - <u>2000 x 8.31</u><br>6.02x10 <sup>23</sup>        | <u> </u>                    |                                    |                                                  |                                                                       |                                        |                                                       |                                                                                      |
|     | C.                                                                                                                                                                                                                                            | 2000 x 8.31                                          |                             |                                    |                                                  |                                                                       |                                        |                                                       |                                                                                      |
|     | D.                                                                                                                                                                                                                                            | 2000<br>8.31 x 100                                   | 0                           |                                    |                                                  |                                                                       |                                        |                                                       |                                                                                      |

-2-

16. What is the expression for the reaction quotient, Q, for the following reaction?

 $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ 

A. 
$$Q = \underline{[N_2]x[H_2]}$$
$$[NH_3]$$

B.  $Q = [NH_3]^2 x [H_2]^3 x [N_2]$ 

C. 
$$Q = \frac{[NH_3]^2}{[N_2]x[H_2]^3}$$

D. 
$$Q = \underline{[NH_3]} \\ [N_2]x[H_2]$$

**17.** The equilibrium constant for the reaction  $A(g) + 2B(g) \rightleftharpoons 2C(g)$  at 300 K is 4.0.

A student measure the following concentrations in a reaction vessel at 300  $\mbox{K}$ 

| [A(g)] /mol dm <sup>-3</sup> | 0.20 |
|------------------------------|------|
| [B(g)] /mol dm <sup>-3</sup> | 0.10 |
| [C(g)] /mol dm <sup>-3</sup> | 0.20 |

From this it can be deduced that

- A. the system is not at equilibrium and must move to the right towards equilibrium
- B. when the system reaches equilibrium the concentration of C will be greater than 0.20 mol dm<sup>-3</sup>
- C. the system is at equilibrium
- D. when the system reaches equilibrium the concentration of B will be greater than 0.10 mol dm<sup>-3</sup>
- **18**. Consider the following system  $X(g) + 3Z(g) \rightleftharpoons 2Y(g) \Delta G$ =-200 kJ mol<sup>-1</sup>.  $\Delta G$ =-RTInK and the value of the gas constant is 8.31 JK<sup>-1</sup>mol<sup>-1</sup>. The value of the equilibrium constant, K, at 500 K is given by

| A. e <sup>{-200/(8.31x500)}</sup> | В. | 10 <sup>{-200000/(8.31x500)}</sup> |
|-----------------------------------|----|------------------------------------|
|-----------------------------------|----|------------------------------------|

- C.  $e^{200000/(8.31\times500)}$  D.  $e^{(200\times500)/8.31}$
- **19.** The table contains the value for the equilibrium constant for a particular reaction at two different temperatures.

| Temperature / K | ∆G / kJ mol <sup>-1</sup> |
|-----------------|---------------------------|
| 200             | +100                      |
| 400             | -500                      |

From this it can be deduced that

- A. the position of equilibrium lies more to the right at 200 K than at 400 K
- B. the value of the equilibrium constant is >1 at 200 K
- C. the value of the equilibrium constant is larger at 400 K than at 200 K
- D. the position of equilibrium lies more to the left at 400 K than at 200 K
- **20.** Which of the following is not amphiprotic?

A. HCO3<sup>-</sup> B. NO3<sup>-</sup> C. H<sub>2</sub>O D. H<sub>2</sub>PO4<sup>-</sup>

**21.** The half equations for the reaction of manganate(VII) with  $Fe^{2+}$  ions are

 $\begin{array}{rcl} Fe^{2+}{}_{(aq)} & \to & Fe^{3+}{}_{(aq)} & + & e^{-} \\ MnO_{4^{-}(aq)} & + & 8H^{+}{}_{(aq)} & + & 5e^{-} & \to & Mn^{2+}{}_{(aq)} & + & 4H_2O_{(I)} \end{array}$ 

The number of moles of Fe<sup>2+</sup> that would be oxidised by 50.0 cm<sup>3</sup> of 0.0200 mol dm<sup>-3</sup> MnO<sub>4</sub><sup>-</sup> is

| Α. | 5.00x10 <sup>-3</sup> mol | В. | 1.00x10 <sup>-3</sup> mol |
|----|---------------------------|----|---------------------------|
| C. | 5.00 mol                  | D. | 2.00x10 <sup>-4</sup> mol |

22. The Winkler method was used to measure the concentration of dissolved oxygen in a sample of water. Manganese(II) sulfate, sulfuric acid and potassium iodide were added to 50.0 cm<sup>3</sup> of the water. The iodine that was formed was titrated against a sodium thiosulfate solution with a concentration of 2.00 × 10<sup>-3</sup> mol dm<sup>-3</sup>. It was found that 10.00 cm<sup>3</sup> of sodium thiosulfate was required for the titration.

The equations for the reactions are:

$$\begin{split} & 2Mn(OH)_2(s) + O_2(aq) \rightarrow & 2MnO(OH)_2(s) \\ & MnO(OH)_2(s) + 4H^+(aq) \rightarrow & Mn^{4+}(aq) + 3H_2O(l) \\ & Mn^{4+}(aq) + 2l^-(aq) \rightarrow & Mn^{2+}(aq) + l_2(aq) \\ & l_2(aq) + 2S_2O_3^{2-(}aq) \rightarrow & S_4O_6^{2-}(aq) + 2l^-(aq) \end{split}$$

The concentration of dissolved oxygen in ppm is given by

| A. | <u>10.00 x 32.00 x 2.00</u> |
|----|-----------------------------|
|    | 4 x 50.0                    |
| В. | <u>10.00 x 32.00 x 2.00</u> |
|    | 50.0                        |

C.  $\frac{10.00 \times 32.00 \times 2.00 \times 10^{6}}{1000 \times 4 \times 50.0}$ 

23. Two half equations and standard electrode potentials are shown below.

 $\begin{array}{ll} \mathsf{Ni}^{2+}(\mathsf{aq}) \ + \ 2\mathsf{e}^{-} \rightleftharpoons \mathsf{Ni}(\mathsf{s}) & \mathsf{E}^{\mathsf{e}} = -0.26 \ \mathsf{V} \\ \mathsf{F}\mathsf{e}^{3+}(\mathsf{aq}) \ + \ \mathsf{e}^{-} \rightleftharpoons \mathsf{F}\mathsf{e}^{2+}(\mathsf{aq}) & \mathsf{E}^{\mathsf{e}} = +0.77 \mathsf{V} \end{array}$ 

The standard cell potential and cell notation are

24. The redox equation for the reaction between dichromate(VI) and bromide ions is:

 $Cr_2O_7^{2-}(aq) + 14H^+ + 6Br^-(aq) \rightarrow 2Cr^{3+}(aq) + 7H_2O(I) + 3Br_2(I)$   $E^{\Theta}_{cell} = 0.27 \text{ V}$ 

The value of the Faraday constant is 96 500 C mol<sup>-1</sup>

The value of  $\Delta G^{e}$  for this reaction is

| A. 🤇 | -156 kJ mol <sup>-1</sup> | В. | -26 kJ mol <sup>-1</sup>  |
|------|---------------------------|----|---------------------------|
| C.   | 59.6 kJ mol <sup>-1</sup> | D. | -357 kJ mol <sup>-1</sup> |

## 25. Three organic molecules are shown below



Which of the following statements are correct?

- Α. All three molecules contain a tertiary carboxamide group
- Only II contains an amine group Β.
- C. I and III contain a carbonyl group
- D. I and II contain an ether group
- 26. The diagram shows the skeletal formula of an organic molecule. The empirical formula of the compound is
  - C12H18 Α.
  - Β. CH1.5
  - C. C<sub>6</sub>H<sub>13</sub>
  - D.  $C_2H_3$

27. The IUPAC name of the compound shown is

- 2-methylmethoxyethane Α.
- В. 2-methoxypropane
- 2-methylethoxymethane C.
- 1,1-dimethylmethoxymethane D.
- 28. The major product when but-1-ene reacts with hydrogen bromide in the dark is?
  - Β. 1,2-dibromobutane Α. 1-bromobutane 2-bromobut-1-ene
  - C. 2-bromobutane D.
- 29. The IUPAC name of the compound shown is?
  - 2-methylpent-3-yne Α.
  - 4-methylpent-2-yne В.
  - 2-methylpent-2-yne C.
  - D. 1,1-dimethylbut-2-yne

Н -Hн Н

CH<sub>2</sub> H

- 30. The main organic product of the reaction when pentananal is reacted with NaBH<sub>4</sub> under suitable conditions is
  - Α. Β. pentanoic acid pentanone
  - C. pentan-1-ol D. pentan-2-ol

 $CH_3$ 

CH<sub>2</sub>CI

H<sub>2</sub>C

н

- **31.** Benzene reacts with concentrated sulfuric and concentrated nitric acid when heated. In this reaction
  - A. NO<sub>2</sub><sup>+</sup> acts as a nucleophile and Lewis acid
  - B.  $NO_2^-$  acts as a nucleophile and Lewis base
  - C. NO<sub>2</sub><sup>+</sup> acts as an electrophile and Lewis acid
  - D. NO<sub>2</sub><sup>+</sup> acts as an electrophile and Lewis base
- **32.** Consider the following reaction:

Nitrobenzene (i) Sn/concentrated HCl/heat (ii) NaOH

The organic product of this reaction is

- A.benzeneB.phenolC.chlorobenzeneD.phenylamine
- **33.** The IUPAC name of the molecule shown is
  - A. (*E*)-1-chloro-2-methylbut-2-eneB. (*Z*)-1-chloro-2-methylbut-2-ene
  - C. (Z)-1,2-dimethyl-1-(chloromethyl)ethene
  - D. (E)-1,2-dimethyl-1-(chloromethyl)ethene
- 34. Which of the following is a protic polar solvent?
  - A. CH<sub>3</sub>COCH<sub>3</sub> B. CH<sub>3</sub>CN C. CH<sub>3</sub>OH D. CHCl<sub>3</sub>
- 35. Which of the following compounds has the highest index of hydrogen deficiency (IHD)?
  - A.  $C_6H_5CH_3$  B.  $CH_3COOCH_2CH_3$ C.  $C_6H_5COOH$  D.  $C_3H_4$
- **36.** Which of the following is correct about the nmr spectrum of ethyl ethanoate
- A. there are 4 peaks in the spectrum corresponding to 4 different hydrogen environments
- B. the spectrum includes 2 triplets as there are 2 groups of 3 protons
- C. the spectrum contains a singlet with integral 3 as there are 3 protons on the CH<sub>3</sub>CO group
- D. there are 2 doublets and a singlet in the spectrum as there are 3 different hydrogen environments
- 37. The nmr spectrum of which of the following molecule(s) contains a triplet?



- **38.** Which of the following statements is not correct about the mass spectrum of ethylbenzene,  $C_6H_5CH_2CH_3$ 
  - A. the molecular ion peak occurs at m/z=106
  - B. the peak at m/z=29 is due to the CH<sub>2</sub>CH<sub>3</sub> fragment
  - C. there will be a peak at m/z=77 due to the loss of the CH<sub>3</sub>CH<sub>2</sub> group
  - D. the mass spectrum will contain a peak at m/z=15
- 39. Which of the following molecules has an IHD of 1 and 3 peaks in the low resolution nmr spectrum
  - A. propan-2-ol B. propanone
  - C. butanone D. butanoic acid
- **40.** A student carried out an experiment to measure the enthalpy change of solution of barium nitrate and obtained the value -32 kJ mol<sup>-1</sup>. The literature value for this quantity is -40 kJ mol<sup>-1</sup>. The percentage error in the student's experiment was
  - A. 8 % B. 20 % C. 25 % D. 80 %