IB SL Revision Equilibrium 1

I am able to:

- 1 Explain what you understand by the term *dynamic equilibrium*.
- 2 Explain what is meant by a *closed system*.
- 3 Describe, on a molecular level, how equilibrium is established when a liquid is placed in a closed container.
- 4 Write expressions for the equilibrium constant, K_c, for

5	Write expressions for the equilibrium constant, Kc1
	for the reactions shown and state the relationship
	between the values of Kc1 and Kc in 4

,	$CO_2(g) + 4H_2(g) \rightleftharpoons CH_4(g) + 2H_2O(g)$
	$^{1}/_{2}N_{2}(g) + ^{3}/_{2}H_{2}(g) \rightleftharpoons NH_{3}(g)$

 $SO_3(g) \rightleftharpoons SO_2(g) + \frac{1}{2}O_2(g)$

 $CH_4(g) + 2H_2O(g) \rightleftharpoons CO_2(g) + 4H_2(g)$

 $\frac{N_2(g) + 3H_2(g)}{2SO_2(g) + O_2(g)} \rightleftharpoons 2SO_3(g)$

- 6 Explain the connection between the value of the equilibrium constant and the position of equilibrium.
- 7 Predict, for each of the reactions shown, the effect of the changes below on the position of equilibrium and the value of the equilibrium constant

$CH_4(g) + H_2O(g) \rightleftharpoons CO(g) + 3H_2(g)$	$\Delta H = +206 \text{ kJ mol}^{-1}$
$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$	$\Delta H = -92 \text{ kJ mol}^{-1}$
$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$	$\Delta H = +52 \text{ kJ mol}^{-1}$

- increasing the pressure
 decreasing the temperature
- decreasing the tempeadding hydrogen
- adding a catalyst
- 8 Explain whether the reaction $A \rightleftharpoons B$ is endothermic or exothermic from the values of the equilibrium constant.

 $K_c = 1.2 \times 10^4$ at 500 K and $K_c = 5.6 \times 10^5$ at 1000 K

9 Write expressions for the reaction quotient, Q, for the following reactions

$2A(g) + Q(g) \rightleftharpoons 2X(g) + 3D(g)$	
$A(g) + 3Q(g) \rightleftharpoons 4X(g) + D(g)$	

- 10 Given the value of Kc and the value of Q deduce whether
 - A the system is at equilibrium
 - B proceeds to the right towards equilibrium
 - C proceeds to the left towards equilibrium

(a)	$A(g) + X(g) \rightleftharpoons 2Q(g) + Z(g)$	Value of $K_c = 0.0300$ Value of $Q = 0.100$
(b)	$2A(g) + X(g) \rightleftharpoons 2Q(g) + 2Z(g)$	Value of $K_c = 0.0200$ Value of $Q = 0.0100$
(c)	$A(g) + 2X(g) \rightleftharpoons Q(g) + 3Z(g)$	Value of $K_c = 0.160$ Value of $Q = 0.160$