I am able to:

- 1 Describe how positive and negative ions are formed.
- 2 Give the formulae of the ions formed by the following elements: Li Ba Al Br O N
- 3 State the formulae (with charges) of the following ions: nitrate sulphate hydroxide ammonium carbonate hydrogencarbonate phosphate(V)
- 4 Work out the formulae of the following ionic compounds:

Lithium fluoride	Sodium hydrogencarbonate	Iron(II) phosphate
magnesium chloride	Calcium nitrate	Sodium carbonate
ammonium sulfate	Barium hydroxide	Copper(II) nitrate

5 Classify each of the following as having mainly ionic or mainly covalent bonding:

CO₂ CaS PCI₃ OF₂ MgO

- 6 Explain what is meant by *ionic bonding*.
- 7 Describe the structure of ionic compounds
- 8 Explain why ionic compounds
 - have high melting point,
 - are non-volatile
 - are often soluble in water
 - do not conduct electricity when solid
 - conduct electricity when molten or in aqueous solution
- 9 Explain what is meant by a covalent bond
- 10 Draw Lewis structures for:

O ₂	C ₂ H ₂	N_2
HCN	NH ₄ +	N_2H_4
CO ₂	C ₂ H ₄	CO ₃ ²⁻

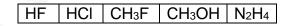
- 11 State and explain the differences in bond length and bond energy in
 - C₂H₆, C₂H₄ and C₂H₂
 - N₂, N₂H₄ and N₂H₂
- 12 Understand what is unusual about the Lewis structures for BCl₃ and BeCl₂
- 13 Explain what is meant by the term coordinate covalent bond
- 14 Explain which of the following contain coordinate covalent bonds

O₃ CO PCl₃ NH₄⁺ NO₂⁺

- 15 Explain the valence shell electron pair repulsion theory for predicting shapes of molecules.
- 16 Predict the electron domain geometry, shape and bond angles of:

CH ₄	H ₂ O	C ₂ H ₄	Н₃О⁺	CO ₃ ²⁻	O ₃
NH ₃	CO ₂	C ₂ H ₂	NH ₄ +	BF ₃	PCl ₃

ID CI	Dandina	Davisias	^
IB OL	Bonaina	Revision	_


- 17 Explain what is meant by *electronegativity*
- 18 State and explain which of the following bonds is most polar: H-C H-Cl H-F
- 19 Explain which of the following molecules is/are polar:

N_2	NH ₃	PCI ₃
CO	CO ₂	CH ₂ Cl ₂

- 20 Explain what is meant by a resonance structure
- 21 Draw two resonance structures for O₃.
- 22 Draw resonance structures for each of the following

CO₃²- C₆H₆ CH₃COO NO₂ NO₃-

- 23 Explain the origin of London (dispersion) forces.
- 24 Explain what van der Waals forces are.
- For each of the following pairs, explain in terms of intermolecular forces, which has the higher boiling point.
 - Cl₂ or Br₂
 - CH₃CI or CH₃Br
 - CH₃CH₂CH₃ or CH₃OCH₃
 - CH₃CH₂OH or CH₃OCH₃
 - NH₃ or PH₃
- 26 Draw a diagram to show the hydrogen bonding between molecules of water.
- 27 Explain which of the following will have hydrogen bonding between molecules

- 28 Explain why covalent molecular compounds:
 - have low melting and boiling points
 - are volatile
 - do not conduct electricity when liquid
 - tend to be soluble in organic solvents
- 29 Explain which of the following chlorides will have the lowest boiling point

NaCl MgCl₂ SiCl₄

30 Explain which of the following chlorides will be the best conductor of electricity in the liquid state

NaCl SiCl₄ SCl₂

- 31 Explain the relative solubilities of ionic and covalent substances in polar and non-polar solvents.
- 32 Describe the structure and bonding of
 - Diamond
 - Graphite
 - o Graphene
 - o C₆₀ buckminsterfullerene

- 33 Describe the structure and bonding of silicon dioxide
- 34 Explain why diamond has a much higher melting/boiling point than C₆₀ buckminsterfullerene
- Explain why graphite and graphene are better conductors of electricity than diamond and C₆₀ fullerene.
- 36 Explain what is meant by *metallic bonding*.
- 37 Explain why metals conduct electricity and are malleable.
- 38 Explain why magnesium has a higher melting point than sodium
- 39 Explain what an alloy is.
- 40 Explain why alloys tend to be stronger than pure metals.